Comparison of small and large

Suppose we want to compare the diameter of earth with that of the sun.
Is it possible?
Yes!
How?
By using exponential forms
Diameter of sun $=1.4 \times 10^{9} \mathrm{~m}$
Diameter of earth $=1.2756 \times 10^{7} \mathrm{~m}$
therefore $\frac{1.4 \times 10^{9}}{1.2756 \times 10^{7}}=\frac{1.4 \times 10^{9-7}}{1.2756}$
= 100 approx

So diameter of sun is 100 times diameter of earth.
Is this interesting?

Example :-

Size of red blood cell is 0.000007 m
Size of plant cell is 0.00001275 m Compare their sizes.

Size of red blood cell $=0.000007 \mathrm{~m}$

$$
=7 \times 10^{-6} \mathrm{~m}
$$

Size of plant cell $=0.00001275 \mathrm{~m}$

$$
=1.275 \times 10^{-5} \mathrm{~m}
$$

Therefore $\frac{7 \times 10^{-6}}{1.275 \times 10^{-5}}=\frac{7 \times 10^{-6-(-5)}}{1.275}$

$$
=\frac{7 x 10^{-1}}{1.275}
$$

$$
\begin{aligned}
& =\frac{0.7}{1.275} \\
& =\frac{0.7}{1.3} \\
& =\frac{1}{2} \text { (approx) }
\end{aligned}
$$

So Red blood cell is half of the plant cell in size.

Example

The distance between sun and earth is $1.496 \times 10{ }^{11} \mathrm{~m}$ and the distance between earth and moon is $3.84 \times 10^{8} \mathrm{~m}$.

What is the distance between moon and sun at the time of solar eclipse?

During solar Eclipse moon comes in between earth and sun.

$3.84 \times 10^{8} \mathrm{~m}$

Distance between sun and earth $=1.496 \times 10{ }^{11} \mathrm{~m}$
Distance between earth and moon $=3.84 \times 10^{8} \mathrm{~m}$
Distance between sun and moon $=1.496 \times 10^{11} \mathrm{~m}-3.84 \times 10^{8} \mathrm{~m}$

$$
\begin{aligned}
& =1.496 \times 1000 \times 10^{8} \mathrm{~m}-3.84 \times 10^{8} \mathrm{~m} \\
& =(1496-3.84) \times 10^{8} \mathrm{~m} \\
& =1492.16 \times 10^{8} \mathrm{~m}
\end{aligned}
$$

